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As a test of the usefulness of matrix methods in extending phase information of proteins, the phases of 
triclinic lysozyme were calculated in the range from 3"3 to 2.5 A (2000 phases) using as a starting set the 
phases out to 3-3 A (1500 phases) and all the amplitudes. Observed ([Fobsl) and calculated (IFmodll) 
amplitudes were tested separately. The agreement of the predicted phases and the original ones was studied, 
and was observed to depend strongly on the normalized value of the corresponding structure factor, 
IEI. Different methods for assessing the quality of the predicted phases were considered, and the cor- 
rel~ttion between electron density maps corresponding to predicted and original phases was selected as 
the most indicative of usefulness in structure determination. Predictions with the two different starting 
sets were studied using this correlation factor. A correlation of 0.5 between the predicted and original 
maps was obtained for the Fmodi, 0Crnodt case, and a correlation of 0.35 for the Fobs, ~,,od~ case. Both 
correlations are significant. 

1. Introduction 

Direct methods are now a well established way of 
solving the phase problem in determinations of crystal 
structures with less than about I00 atoms in the asym- 
metric unit. In particular, the tangent formula (Karle 
& Karle, 1966) has proved to be very useful both for 
phase determination ab initio and for extending phase 
information from an initial set of known phases. How- 
ever, applications of this method to protein structures 
(Reeke & Lipscomb, 1969; Weinzierl, Eisenberg & 
Dickerson, 1969; Coulter & Dewar, 1971 ; Destro, 
1972) have met with only limited success. Perhaps the 
most successful example so far reported is the case of 
carp myogen for which phase refinement and extension 
from 2.0 A to 1.85/~ resolution using the tangent 
formula led to some improvement in the electron 
density map (Hendrickson & Karle, 1973). Sayre 
(1974), using Sayre's formula (Sayre, 1953), achieved a 
far more striking improvement in the electron density 
map of rubredoxin by phase extension from 2.5 A to 
1-5 A, but this procedure apparently requires near 
atomic resolution to begin with and proved unsuccess- 
ful when applied to a starting set of 3.0 A resolution 
phases. 

We have been concerned with developing an effec- 
tive method for extending phase information to high 
resolution from a set of known phases out to 3 A or 
4 A. This would be appropriate to the quite common 
situation in protein crystallography, where X-ray data 
for native protein crystals may extend to quite high 
resolution, but the standard method of multiple iso- 
morphous replacement gives reliable phases only for 
relatively low-order reflexions because of imperfect 
isomorphism. In this work we have made use of co- 
variance matrices (Tsoucaris, 1970a) which give expres- 
sion to the relationship between structure factors in 
molecular crystals. In principle such a matrix should 

have an order greater or equal to the number of atoms 
in the asymmetric unit. In practice such a high order is 
very difficult to attain, and the limit is set by the num- 
ber of available structure factors. Since Castellano, 
Podjarny & Navaza (1973) have shown that it is pos- 
sible to set a fraction of the matrix elements equal to 
zero, the method can be used in practice for phase 
extension. The tangent formula is in effect a cova- 
riance matrix of order three (Tsoucaris, 1970b), and 
therefore less powerful than full matrices in predicting 
phases. 

The phase predictions are made in terms of a set of 
generating reflexions, chosen according to criteria 
which are discussed below, and treated as random 
variables. The phase of any one of these reflexions can 
be determined from its statistical regression on all the 
other reflexions of the generating set. For this the E's  
of the generating reflexions are intercorrelated to 
generate a covariance matrix (U). 

This Hermitian matrix is obtained from the complex 
E's  phased by isomorphous replacement or by struc- 
ture factor calculations, according to Ut j=(E(hj ,  r ) .  
E*(hk, r))r = U(hj - hk)1" (in space group P 1) for indices 
hj and hk in the generating set, the average being taken 
over the atomic coordinates r which are considered 
random variables (Castellano et al., 1973). Filling the 
U matrix implies a priori knowledge of N ( N - 1 ) / 2  
unitary structure factors. This matrix is then inverted 
to obtain the inverse matrix (D). Appropriate ele- 
ments of the matrix and the E 's  of the generating 
reflexions are then used to calculate a unimodal one- 
dimensional probability distribution for the unknown 
phase according to formula (1) of §3. If one wishes to 
refine imprecisely known phases, one may include 
these reflexions to constitute the bulk or even all of the 

t This equation is equivalent in P1 to equation 4 (de 
Rango, Tsoucaris & Zelwer, 1974), but derived differently. 
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generating set, but for phase extension one E for each 
unknown phase is added in turn to the generating 
reflexions. 

We have tested the usefulness of this method of 
phase extension on triclinic lysozyme, the structure of 
which has recently been determined in our laboratory 
at 2.5 A resolution with R=35 % (Moult et al., 1976). 
We used a set of observed structure amplitudes Fobs 
and phases calculated from the final lysozyme structure a(x): 
amod~ to predict phases which were assumed unknown, a: 
We also made similar predictions starting with a set aN(i): 
of Fmodl and amoo~ in order to gauge the influence of 
experimental errors. The accuracy of the predictions 
was estimated in terms of the mean standard deviation 
between the values predicted for a set of phases and 
the corresponding 'correct' values calculated from the amodl(i): 
atomic coordinates of the structure. 

Our investigation proceeded through the following F: 
stages: 

(1) Covariance matrices were constructed using 
several sets of Fmod~ and amoal corresponding to various [El: 
matrix orders (i.e. numbers of generating reflexions), 
occupancies (i.e. proportions of off-diagonal matrix Ej, Ek: 
elements not equal to zero) and lower limits for the 
modulus (E) of the generating reflexions. Phases were Ro: 
calculated for all the generating reflexions and mean 
standard deviations from the amoa~'s determined for the 
various cases. This investigation served to indicate EN(i): 
optimum values for these three parameters and hence 
appropriate 'selection rules' for the generating reflex- 
ions. 

(2) A covariance matrix was constructed using Rp: 
Fmodl and amodl values from reflexions with spacings 
greater than 3.3 A only. This matrix was then used to 
predict the phases of all reflexions between 2.5 A and Ujk: 
3"3 A and their accuracy was determined by comparison 
with the corresponding amoal values. This range of 
resolution was chosen because it implies an appreciable 
number of newly determined phases, provides a co- 
variance matrix of sufficient occupancy to ensure a 
solution, and falls in the medium resolution range of UjN(i): 
great practical interest. 

(3) Phase extension was carried out as in stage (2), 
but using Fob~ and amocl I values for the generating set 
and Fobs values for reflexions whose phases were pre- 
dicted. Rk: 

(4) The efficacy of the phase extension was further 
tested in direct space. An electron density map was 
calculated out to 2.5 A resolution using Fmod~ values, T: 
together with amod~'S for reflexions out to 3.3 A and 
phases predicted in stage (2) for reflexions between U(i)" 
2.5 A and 3.3 A. This map was compared with 3.3 A 
and 2.5 A resolution maps, both prepared using Fmod, 
and amoal. 

(5) A comparison similar to that outlined in (4) was D(i): 
carried out using Fob~ instead of Fmod~, and the phases 
predicted in (3). The map incorporating the phase 
extension, which closely approximates to a practical 10,11: 
situation, was found to show more correct detail than 

the 3.3 A map calculated from Fobs's and amoa~'s. It 
was also found that there was a strong positive correla- 
tion in the electron densities contributed by the 2.5 A 
to 3.3 A reflexions using Fobs with amod~ values and 
using Fobs values with phases predicted in stage (3). 

U/~j = UjN(i  ) " 

2. Notation 

Mean standard error of the variable x. 
Phase of a structure factor. 
Phase angle variable with a probability 
distribution, the mean of which is taken 
as the predicted phase for EN(i),%rea. 
This mean is also referred to as aA, as it 
is the phase of AN(i). 
Phase of EN(i), calculated from atomic 
coordinates. 
Modulus of a structure factor: Either 
Fobs (experimentafly measured) or Fmod~ 
(calculated from an atomic model). 
Modulus of a statistically normalized 
structure factor. 
Set of generating structure factors, nor- 
malized. Number= N - 1 .  Known phase. 
Reciprocal of smallest spacing represen- 
ted by generating reflexions of known 
phase, A -I 
Set of structure factors (normalized) 
whose phases are to be predicted, i-- 
1 . . .M,  M being the number of phases 
to be predicted. 
Reciprocal of smallest spacing repre- 
sented by reflexions whose phase is to be 
predicted, A -1. 
Covariance of normalized structure fac- 
tors Ej and Ek=element of submatrix 
UN- t j ,  k = I . . . N - 1 .  
Element of last column of covariance 
matrix U, corresponding to prediction of 
structure factor EN(i). 
is calculated as U(hj-hN), where hj and 
hN are the Miller indices of Ej and EN, 
respectively. [See Castellano et al., (1973) 
equation (2.4), and apply for space group 
P 1. U is denoted there as m] 
Reciprocal of smallest spacing repre- 
sented by reflexions whose phase is 
known a priori, A -1. 
Total number of reflexions whose phase 
is known a priori. 
Covariance matrix of all generating 
reflexions, including EN(i) as the last 
element. Its submatrix UN-1 remains 
constant as i changes. 
Inverse of U(i). Contains submatrix 
DN_ 1 and last column and r o w  DjN and 
DNj. 
Zero and first-order modified Bessel 
functions. 
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e . 

K~,K,: 

As(i)" 

B(i)" 
w(i) " 
ff:(i) " 
W "  

hj, h~: 

rt: 
C: 
MI:  
M R :  
M W :  
G: 

Probabil i ty distribution function. 
Normal iza t ion  constants. 

N - - I  

- ~, 2Dsk(i)Ek = predicted structure fac- 
k - - I  

tor. 
IA~(i)[. IEs(i)l. 
cos [ ~ a ( i ) -  as(i)]. 
Expected value of  w(i) 
Mean value of ~(i), averaged over i. 
Miller indices of  normalized structure 
factors Ej  and E k. 

Ro/Rk. 
Correlat ion between electron densities. 
Mean  correlation. Ideal (w) weighting. 
Mean  correlation. No weighting. 
Mean correlation. ~ weighting. 
N u m b e r  of  electron density map  grid 
points. 
O(x,y,z): Electron density. 

Note that index i is sometimes not printed, but still 
implied. 

3 .  T h e o r y  o f  e r r o r s  i n  p h a s e  d e t e r m i n a t i o n  

The errors in phase determinat ion depend on the set of  
generating reflexions, in so far as these represent the 
whole input  of  the method and determine its progress. 
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Fig. 1. Distribution of errors in the phase extension of the B 
range from 0 to 2 in both Fn, oa~ and Fo~ cases, for triclinic 
lysozyme. Theoretical curve was calculated from the equa- 
tion P(0~N - aA) = [2rd0(B)] - ~ exp [B cos (0~ - ~A)] for B = 0.5 

= Exact data; © = observed data; x = theoretical curve. 

It has been shown that  the mult idimensional  probabi l i ty  
distribution for a set of  normalized structure factors is 

N 

given by P(Ex . . .E j ,  Ek . . .Es )=K~ . exp  - ~. E~OjkEk 
j k = l  

[de Rango et al., 1974, equation (5b)] provided the 
central l imit theorem holds (Tsoucaris, 1970a; Castel- 
lano et al., 1973). Now, the probabi l i ty  of  the N t h  
generating reflexion having phase c~s,t becomes after 
normalizat ion and collection of all the terms containing 
~ N  

1 
? ( ~ s ) = ? ( ~ s l E ~ , . . . E j ,  E s -  1 ,1EsI ,U)-  2~1o(B) 

× exp [B cos ( ~ -  ~a)] (1)~+. 
where 

and 

N - - 1  

As=lAs l  exp (i~) A =  ~ - 2 D I N E  J 
j = l  

B=IENI . IAsl 

[de Rango et al., 1974, equation (10)]. 
This last formula  represents a unimodal ,  one- 

dimensional  probabi l i ty  distribution, whose shape is 
shown in Fig. 1. It has a m a x i m u m  for ~ s = ~ a  which 
for this unimodal  distr ibution represents both the 
centroid and the most  probable phase, and the disper- 
sion is a function of B, the sharpness increasing with B. 
The mean standard deviation of ~s is defined by 

l 
~tA+~t 

(a (~s) )2= [½7do(B)] ( ~ s - a A )  2 
a A --~ 

× exp [B cos (~s--~A)]dccs • (2) 

For  an equally precise and more simple treatment,  it is 
convenient to calculate ~ = M e a n  [cos (~s-~A)]  as a 
measure of  dispersion, as 

I 
r t A + ~  

• = (cos (~s-C~A)) = [½~Io(B)] cos ( ~ s -  ~A) 

×exp  [B cos (O~s-O~A)]docs=Ix(B)/Io(B) (3) 

(McLachlan,  1955). 

t This phase, which could be any kth phase, is arbitrarily 
taken to be the last in order to simplify later discussion. 

:I: To derive this formula, we start from 
N--I /V--I 

P(E~.. "EN)=Kt × exp - (  ~ E~DjkE~+ ~ E~Dj~E.~ 
J k = !  J=l  

N-1 
+ ~ E~DNkEk+ IENI~DN~), 

k = l  

isolate the terms dependent on 0~N 
N--1 

P(a~) =/(2 x exp -- [real (E*N z ~ DNkEk)] 
k = l  

=Ks × exp [IENI IANI cos (ctN-- ~A)] 

=/(2 x exp [B cos (~u - ~A)], 
then normalize 

i f 1 = P(e~)da~ = Kz exp [B cos (0oN - 0~A)]d~n,- 
0 0 

= K2 x 2~1o(B)  
from which/(2= 1/2rdo(B) and (1) follows. 
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A similar measure of dispersion, the figure of merit 
m, has been used in Blow & Crick's (1959) treatment of 
multiple isomorphous replacement, and has proved 
very useful. We shall refer to ~ as the weight of a given 
phase prediction, as we shall later use it as a weighting 
factor to improve our maps in much the same way as 
the figure of merit, m, is used. 

The limits for ~ are" 
When B---~ co, ~ - +  1, corresponding to 0CA=tXmodl 
(complete prediction) when B ~ 0, ~ - +  0, corre- 
sponding to C~a--~mod, = --+ re/2 (no prediction). 

The relationship between B and the phase dispersion 
is defined by both (2) and (3). Formula (3) is more 
useful in practice, as (2) involves integral calculus. 

It is useful in order to understand the character of B 
to approximate formula (1) for high values of B. This 
sharpens the distribution in it, rendering meaningful 
only the zone of integration where (aN--C~A) is small. It 
is therefore valid to use the approximation cos (aN-- 
0~a) = 1--(0C N-o~a)2/2 which transforms the probability 
distribution of aN into a Gaussian, K2 exp [--B(C~N 
-0~a)2/2]. The variance of this Gaussian is a =  B-1/2, o r  

B=a -2. Thus, B is simply the inverse of the mean 
square error of the phase prediction, squared. This 
approximation implies an error of about (C~N--0CA)4/24, 
which means that it is possible to use it as a comparison 
within the range of error of 0 to 1 radian (0 ° to 57 °) 
with error of less than ~ (4 %) in the approximation 
of cos (C~N--0C,,). Within the same range and with a 
similar error, we can equate: 

(cos (~N-- ~a) )  = (1 - - ( ~ N - - ~ a ) 2 / 2 ) =  1 - ((aN - ~a)z) /2  

which implies 

¢,= l -aZ/2= 1- (1 /2B)=(2B-  1)/2B (3a) 

which, as will be shown later, is a good approximation 
to formula (3). Thus, it is clear that minimizing the .e 
e r r o r  ( ( ~ m o d l - - ( ~ p r e d )  or maximizing ~ is equivalent to 
maximizing B. Now considering the whole set of 
predicted phases, the best set of conditions corresponds 8 
to the maximum mean value of ~, averaged over all 
the predictions. If we define the mean value of • as 

M M 

~IEN(i)I z ~ (cos [~N(i)--O~,,(i)])lEN(i)l 2 
: i = 1  1 = 1  
W ~ ~ . . . . . . . . . . . . . . .  M M 

IEN(i)I 2 ~ IEN(i)I 2 
t = 1  l = J .  

M M 

= ( ~ cos [O~N(i)--=a(i)]lE~(i)12/ ~ IEN(i)I 2) 
1 = 1  i = 1  

when we consider the use of correlations between 
electron density maps in assessing the quality of 
predicted maps. We will then see that the real correla- 
tion, MR, defined by 

cos [CXmodl(i)--~xA(i)]lEN(i)l 2 

M R =  ! . . . .  ~ IEN(i)21 (4) 
i 

represents the correlation between the electron density 
map with exact phases and the electron density map 
with predicted phases. Thus # equals the expected 
value of MR, which means that in terms of electron 
density maps maximizing the set B(i) maximizes the 
correlation between predicted and correct electron 
density maps. 

To perform this maximization we have to maximize 
B(i) for each reflexion. This, in turn, recalling that 

N - 1  

B(i)=IEN(i)I I ~ 2DNjEjl, (5) 
] = 1  

implies maximizing IEjI, IEN(i)I, N and DNj, as well as 
aligning the terms in the summation. However, if we 
assume that the phases in the summation are random, 
we can neglect the last condition. 

To maximize Ej we shall choose generating reflexions 
with structure factors having large moduli. For 
measuring the maximization of the elements DNj, we 
express them as (see §5): 

N - - I  

D~j(i)---- -- ~ (Uff_ 11)jkUkN(i)DNN(i) 
k = l  

[where the summation i extends over all the predicted 
reflexions, and # =  #(i) for reflexion (i)], we have to 
maximize this function to obtain the best set of condi- 
tions. This corresponds to maximizing the set #(i) and 
hence, to maximizing B(i). The reason for this partic- 
ular weighting scheme in averaging # will be clear 
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Fig. 2. Schematic representation of the influence on the final 
error in phase prediction of det (Uu) and delta det (Uu) as 
functions of the matrix order• Experimental results are 
shown in Fig. 4. Error due to det (Uu). - . . . . . . .  
Error due to delta det (Uu). - . . . .  det (U u) & delta det 
(Uu). Total error. 



A. D. P O D J A R N Y ,  A. Y O N A T H  A N D  W. T R A U B  285 

which enables us to put the summation in (5) as a 
quotient of determinants whose denominator is 
det [ U ( N -  1)]. Therefore, we see that maximizing DNj 
implies taking det [ U ( N -  1)] close to zero. To do this, 
we may increase N, using the fact that a Karle-Haupt-  
man determinant decreases with its order, and reaches 
zero when its order N equals the number of atoms in 
the unit cell (Karle & Hauptman, 1950). Utj is not a 
Kar le-Hauptman matrix, except for space group P 1, 
but a Goedkoop matrix. Therefore, its determinant is 
zero when its order equals the number of atoms in the 
asymmetric unit (Goedkoop, 1950). In that way, 
maximizing Dsj  implies increasing the matrix order 
until it reaches the number of atoms in the asymmetric 
unit. 

However, increasing N and decreasing det (U~¢-1) 
also increases the error introduced by the inversion of 
the matrix. Again taking det (UN_ ~) as a representative 
scalar, we see that 

A[det (UN_,)] 
,4 det (Uff!~)= det [ U N _ I ]  2 

This implies that the error in the matrix inversion 
increases more rapidly than the inverse itself, and its 
effect is to decrease the ~ and increase the error of the 
output phases (see Fig. 2). Therefore there exists a 
value of N, below that for which the determinant is 
zero, for which ~ is a maximum. 

In considering the maximization of ~, we have not 
yet introduced the fact that Ujk need not be completely 
full, but may contain zeros. These may correspond to 
structure factors of unknown value and this situation is 
comparable to an electron density from a Fourier sum- 
mation of an incomplete set of structure factors. The 
consequences of this situation are twofold. Firstly, as 

the electron density is not necessarily positive, the 
positive definite character of Ujk need not hold for all 
values of N up to the number of atoms in the asym- 
metric unit, as would be the case for a complete 
matrix. In fact, the positive definite character is lost 
at an earlier stage, as is described in §4. This limits the 
theory, in its present form, to the range where the 
matrix is positive definite and therefore a proper 
covariance matrix. Further possibilities of extension, 
like filtering of negative eigenvalues, are under study. 
Secondly, another empirical parameter, which should 
be empirically optimized, is introduced. This is the 
occupancy of the matrix, defined as the proportion of 
non-zero elements. This is also determined by the 
generating reflexions, and we found experimentally 
that, if all the other parameters are kept constant, 
increases with the occupancy. 

4. Experimental optimization 

Thus, there are three parameters that influence ~ ;  the 
mean moduli of the E/s ,  matrix occupancy and matrix 
order. The matrix order simply equals the number of 
generating reflexions. The occupancy, however, is 
related to the generating reflexions in a more compli- 
cated way, which requires some elaboration. The 
covariance matrix, in space group P 1, is Ujk = U ( h j -  
hk), where hj and hk correspond to generating reflex- 
ions. Assuming, as is generally the case, that the whole 
set of structure factors with known phases lies within 
a known sphere in reciprocal space and that we choose 
the generating reflexions from within another sphere, 
the generating sphere, we conclude that the condition 
for 100 % occupancy is that, for all j, k, h i -  hk must lie 
within the known sphere. This implies that the maxi- 
mum modulus of (h j - h k )  is less or equal to the radius 
of the known sphere, that is to say 

2.2] - l 

2 0 I .l - 

1 . 8 -  
, ~  1.0 ~ -  

--~ 1 .6 -  " %. 

1.4-  0 .9  " 

~Lz-  
o o .  0.8 ~' 

1.0-  

0.8 - 0.7 

0.6 
0 6 - - / o  

l 

• 0.5 016 

~ ' ~  x 

• "4.., .,. .,..,..-- 
o ~ " x  
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I. 
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/ 
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/ 
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- 2 . 0  

- 1 9  

- 1 . 8  
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1.6 , ~  

• 1.5 

1.4 
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max Ihj--hk[ <Rk=rad ius  of the known sphere.  (6) 

From the triangle law it follows that 

max Ihj-hkl < max (hj) + m a x  (hk)=2 Rg, (7) 

where Rg=radius of generating sphere. From (6), 
max Ihj--hkl=Rk is a sufficient condition for 100% 
occupancy, so it follows that, if 2R 9 =Rk, (7) implies 
(6), and we have 100 % occupancy. This reasoning can 
be immediately extended to space groups other than 
P 1, using the fact that all matrices corresponding to 
symmetry transformations in reciprocal space are 
unitary, and replacing hk by the symmetry-related 
reciprocal vector: 

Defining r t= Rg/Rk as' a normalized variable for the 
radius of the generating sphere, we started from r t= 
0"5, which implies 100 % occupancy. Increasing rt, we 

Fig. 3. Variation of occupancy and mean value of mod (E) 
with rt, as obser,,ed for matrices of order 400 built from 3A 
resolution data. Note that the product of the two variables 
is approximately constant for the whole rt range, x . . . . . . . .  found that rt--  1.0 implies 60 % occupancy. 
Observed occupancy of the matrix. © - -  ~ Observed We have found that the variation of occupancy with 
mean values of the moduli of the generated reflexions. 
• Product of observed occupancy and mean rt is practically linear for rt between 0.5 and 1.0 (see 
moduli .  Fig. 3). 
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The relationship between rt and the mean value of 
the moduli of the generating reflexions can be examined 
in a similar way. Assuming the values of mod (E) 
follow a normal Gaussian distribution, the percentage 
of reflexions in the generating sphere with mod (E) 
above some minimum value 7 is a function of rt, the 
order of the matrix N - 1 ,  and the total number of 
reflexions in the known sphere T. To find this relation- 
ship, let us assume that the N -  1 reflexions of greatest 
mod (E) within the generating sphere are taken as 
generating reflexions. Then the percentage (PG) that 
these constitute of the total number of reflexions in the 
generating sphere is: 

P G = N .  100/K3.34- zeRo 3 (8) 

where/£3 is a constant relating the number of reflexions 
to the volume in reciprocal space. In the known sphere, 
/£3 is defined by 

T = K 3  . 4 3 -~z~R~. (9) 

Combining (8) and (9), it follows that 

N 
PG = 100. --f .  r t -  3 

We now use the fact that mod (E) is normally distri- 
buted to obtain the following formula that relates PG 
to mod (E), and hence mod (E)  to rt, as: 

100 I ~ P G =  - ~  ~ exp ( - E 2 / Z ) d E =  100erfc~ (7) 

(for erfc see Abramowitz & Stegun, 1965) 

7= erfc-~[(PG). 1/2-~/]001. 

ioo 1 E exp ( -E2 /2 )dE  Mean [mod ( E ) ] = ~  Y 

_ 1 exp[_erfc_l(__~NT.rt_3. 2 ~ ) ] .  

The relation between mod (E) and rt, for an actual 
case, is shown in Fig. 3. It can be seen from that 
figure that changing rt from 0.5 to 1.0 causes the oc- 
cupancy and mod (E) to change in opposite directions, 
thereby cancelling out their influences on ~. 

To decide which rt value was better, we predicted 
the phases of the generating reflexions for r t =  0.6 and 
r t =  1.0, varying in each case the matrix order. 

The results of the two phase predictions are shown 
in Fig. 4 whereas Table 1 shows a comparison between 
the two cases taking into account only the reflexions 
common to both so as to avoid any spurious differences 
due to different phases having been predicted. This 
analysis suggests that the case of rt = 1.0 and N =  320 is 
the best. However, it should be remarked that only a 
limited range of parameters was tested, and this result 
might well depend on the special conditions of the 
lysozyme case. 

Table 1. Comparison o f  mean errors between predic ted  
and original phases  f o r  rt = 1.0 and r t=0.6  (N= 336), on 

the basis o f  62 common reflexions 
rt Mean error (°) 

0"6 45 
1.0 29 

It is important to note that all the optimization of 
parameters for phase extension described above was 
performed in reciprocal space and with only 10% of 
the total available reflexions. Consequently we did not 
extend the comparison of original and predicted phases 
to include electron density maps. 

5. Theory of phase extension 

The preceding investigation showed us that formula 
(1) could be used to predict the phases of the generating 
reflections ctN and indicated optimum parameters for 
performing such predictions. 

We then used these parameters to predict an un- 
known set of phases corresponding to reflexions be- 
tween two spherical surfaces in reciprocal space with 
radii Rk and Rp. This could correspond to a practical 
situation where multiple isomorphous replacement has 
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290 310 330 350 

Matrix o r d e r  

Fig. 4. Experimental results obtained using Fmodl, Ctmodt of 
triclinic lysozyme (out to 2"5 A) that show the variation of 
mean standard error in the predicted phases of the gener- 
ating reflexions as a function of matrix order for ,'t= 0.6 
( ) and rt = 1.0 (-- --  --). The curve for the rt = 
0"6 case may be extended to take account of points not shown 
at 102 ° and 80 ° for matrix order I00 and 230 respectively. 
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yielded reliable phases out only to resolution Rk, 
whereas structure factors of the native protein are 
available out to resolution Rp. 

In the phase extension procedure, the phase ~N must 
be the phase of a generating reflexion. However, 
whereas in the previous situation we included all the 
reflexions whose phases we predicted together among 
the generating reflexions, we cannot do so for phase 
extension, because of the large number of unknown 
phases (about 2000 in the case we treated), because 
these reflexions do not fulfil the optimum set of con- 
ditions, and because we need to know the phases of all 
but a few generating reflexions (all but one in our 
procedure) in order to calculate the unknown phases as 
a statistical regression upon the known ones. It should 
be noted that this calculation depends both on the 
covariance matrix and on the generating reflexions of 
known phase, and is therefore not equivalent to other 
procedures depending only on the covariance matrix, 
where the solution is the eigenvector corresponding to 

U = 

EN.I 
EN 

El.. ~. ...E~'. ~. ~ .m. a. . . . . . . . . . . . . . . . . . . . . . . . .  Ek . . . . . . . . . . . . . . . . . .  EN-tEN = E N(i ) 
I 

U(hl- hi)' U(h~ -h k) U(hq-hl~l) : UI N I X  
\ 

U{h i -h i) 
\ 

t \ 
\ 

\ 

U(hj 'h  k) 

U(hk-h,l)U(hk-hj }:Ugj \ 
\ 

\ 

\ t  

U(hN- ht )U(hwh j ) (UhN-hk) 

U(hi -hN) :UjN 

U(h k -h N) :UkN 

\ 

t 
t. 

D = DN_ I DiN 

DNi  IDNN 

Fig. 5. Blocking of  the matrices U and D = U -  ~ for inversion 
purposes.  Matrix U is generated in space group P1.  The 
generating reflexions Ek are shown for clarity, but  they do 
not  form part  of  the covariance matrix U. The blocks of 
the matrix D are obtained f rom those in matrix U using 
formulae  explained in the text. The part  of  matrix U which 
is f ramed by a double  line is the UN-~ submatrix.  

the largest eigenvalue of the matrix (Main, 1973). We 
may therefore consider two groups of generating 
reflexions. The large group of known phase fulfils the 
optimum set of conditions and remains constant for 
the whole phase extension procedure. The other con- 
sists of reflexions with phases to be predicted, taken a 
few at a time. The reflexions in the latter group will 
not, in general, have high mod (E), and their interac- 
tions with the rest will not necessarily have high 
occupancy. It is therefore desirable, in order to fulfil 
the optimum set of conditions, to reduce this second 
set of generating reflexions to the minimum, the ideal 
case being prediction for one reflexion at a time of 
phase c~N(i), where i is an index running through all the 
phases to be predicted. 

This is the procedure we used according to the 
scheme outlined in Fig. 5. An apparent difficulty is 
that it implies a different statistical problem (and 
therefore a different matrix inversion) for each phase 
to be predicted. However, all the different matrices 
(2000 in our case) differ only in their last row and 
column, and it is in fact possible to perform all the 2000 
inversions in one step. 

It can be seen from the basic formula 

1 
P[~"(i)]-  2zd0(B) exp [IEN(i)I. IAN(i)I] 

× cos [~u(i)--~a (i)] 
where 

N--1  

Au(i)=- ~ Dm(i)E J 
j = l  

that all the information needed to predict ~u(i) is con- 
tained in Eu(i) and in the various values of Ej and 
Dm(i ) for j =  1 to N. Though each of the 2000 phase 
predictions requires the calculation of different values 
of DNj(i), we can avoid having 2000 matrix inversions 
by considering the product of the matrix U and the 
inverse matrix D in terms of the blocks N - 1  × N - 1 ,  
N × 1, 1 x N and 1 × 1 illustrated in Fig. 5. This product 
equals the unit matrix so that 

N - - I  

~UjkDks+Uj~(i)Dm(i)=~j~ j,s=l, N-1 
k = l  

N- -1  

~UjkDkN(i)+UjN(i) DNN=0 j = l ,  N - 1  
k = l  

N--1  

UNk(i)nkN(i) + UNNDNN = l 
k = l  

which leads to the solution (Ayres, 1962) 
r t ( l )  --N- 1,j~ = ( I I ; !  1)jk 

+ ~ - 1  • D( t )  • - 1  ( u ~ _ l ) j , u , ~ 0 )  ~ u ~ , 0 )  (u~_l)~k 
t , s  

n ( l )  i l l ( l )  ~ =~ . . ^ ,~ -  u~Xi)(u;_~ 0jku~.(i)]  -~ 
j k  

U t D  Din(i) = _ ~  -x • (~) 
k 

D " ) - D ~  i) and j,k,l,s=l N - 1  (10) 
N J  ~ , • • • ,  • 
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The last line gives the values of Dm(i ) required for 
phase prediction in terms of only one matrix inversion, 
Uff!~. D ~  is a scalar. 

6. Practical applications of phase extension 

It can be seen from formula (10) that the occupancy 
of the matrix column U~N(i) directly affects the values 
of the inverse elements D~N(i) and hence the size of 
rood (A) and the accuracy of the phase prediction A N(i) 
discussed above. This occupancy depends on the radius 
Rg of the sphere which encloses the generating reflex- 
ions Ej and the radii Rk and Ru which define a shell 
containing reflexions Es(i) whose phases we wish to 
predict. We chose Rk and Rp as the reciprocal of 3.3 A 
and 2.5 A respectively. This implies predicting 2000 
phases starting from 1400 reflexions with known 
phases and gave an average occupancy for the matrix 
columns Uj~(i) of about 35 %. 

First we used Fmoa~,~modl values and inverted the 
UN-~ matrix having only reflexions out to 3.3 A and an 
occupancy of 59 %. We then used the D matrix to 
predict the N - 1  (in this case 336) generating reflex- 
ions. The mean standard error of these predicted 
phases is 65 ° (degrees). 

We then added the various UjN(i) columns, calcu- 
lated values of Dju(i) from equation (10) and hence 
derived AN(i) and predicted phases for the 2000 ad- 
ditional reflexions. An analysis of these extended 
phases for different B ranges is shown in Fig. 6 and a 
comparison of the observed error distribution with 
that expected from formula (1) is shown in Fig. 1. It is 
clear that the observed distribution agrees well with 
theoretical expectations. 

We also compared observed ~ =  Mean [cos ( ( X m o d l - -  

~rea)] with the theoretical value calculated according 
to both the exact formula #=&(B)/Io(B) and to the 
approximate formula ~ = l - ( 1 / 2 B ) .  The results are 
shown in Table 2, from which it can be seen that the 
expected and observed ~ values agree, and that the 
approximate formula is useful for B>  1.5. 

Table 2. Mean value of c o s  (~modl--0~pred)  in different 
ranges of B 

ep,.a is the phase predicted in the shell 2.5 -3.3 A, from Fmoa~ 
~moa~ data to 3"3 A. 

B Mean value of Percentage of 
range c o s  (~modl --  ~pred) A(B)/lofB) 1 - (1/2B) reflexions 

0-2 0-26 0.42 0.50 86 
2--4 0.61 0.83 0.84 12 
4-6 0.77 0-90 0.90 1.4 
6-8 0.78 0.94 0.94 0.3 

These two tests show that the errors predicted by the 
theory agree with the observed errors for the Fmo~, 
0~mod! case. However, we also wished to define a mean 
weight for the predicted phases that would be roughly 
equivalent to the mean figure of merit used in the 
multiple isomorphous replacement method (Blow & 

Crick, 1959). This should be some mean of cos (emoa~- 
%red) and we chose the mean square value of w, 
weighted with mod [E(i)] 2, as follows 

M M 

(MI) 2= { ~ w2(i)lF-,~,(Ol=}/~, IE~(i)I'. (11) 
i = i  i = 1  

The reason for this weighting is that it gives greatest 
importance to the reflexions that contribute most to 
the electron density, making MI a measure of the ac- 
curacy of the prediction in direct space, i.e. a correla- 
tion between the correct and predicted electron density 
maps. This correlation is defined as 

c= <(e,-&). (m- &)>/o(eO • o(e~) 

<eie2> eie2 

o-(~,)o-(~) o(~,,)o(o9 

_ _{~iw(i)21EN(i)lZ} ½ -~,Q2 

Y. IE~(i)I z ~(e,)G(O2) 
i 

(12) 

[where Ot(x,y,z)=electron densi ty=Four ier  trans- 
form of IEI .exp (/amoa0, Q2(x,y,z)=Fourier trans- 
form of 

1 ~ Q(xq, yq, zq) wlEI exp (i~pred), (Q)= ~-  ~=~1 

G = number of grid points, and Fourier transforms are 
calculated from structure factors between 3.3 A and 
2.5 A in (12)]. C is equal to MI provided that the second 
term is much smaller than the first, a condition that 
is generally met in practice. 

80[ i , , , , , , , , 

rr 70 ~+ 

A~. 60 " o 
s o - ~  

+ o Ig 4 0 - ~  
o 30- + - 

(3 

+ 
I 0  t I I t ) ) I w 

I 2 5 4 5 6 7 8 9 

B 

Fig. 6. Phase extension. Variation of !55~); ((=moa,--~p,-,a)> 
for predicted phases (from 3.3 /~ to 2 matrix order= 
336, as a function of B. + =Fmod, data; o =Fo~s data. The 
theoretical behaviour of <6=> for B> 1, is represented by a 
full line 

<6~)= .... 1 ~ ~ exp (B cos ~)d3~. 
7r tl0 

This figure has similar format to Fig. 1 of de Rango, Mauguen 
&Tsoucaris (1975). 
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A calculation was made of this correlation factor 
between electron density maps calculated from data 
for the range 2.5 A to 3.3 A using Fmod~,amodl and 
Fmod~,%red (see §7). This factor is independent of the 
scales and the zero-points of the maps, and measures 
the resemblance between the features of the two maps. 
As these maps are calculated using the extended phases 
from 3.3 to 2.5 A, the value of MI gives a measure of 
the accuracy of the extended phases in terms of electron 
density. The value of MI for these predictions is 0.683. 
This calculation, for a map with 50000 grid points, is 
accurate to 1.3 %, with a confidence level of 99.8 %. 
When correlations are calculated between unrelated 
maps, they give zero to within 0.5 %. For comparison, 
MI was calculated from formula (11) for tetragonal 
lysozyme structure factors with figures of merit derived 

I E TIT 

MODL 2.5~, 
Arg 14,C 7 

MODL 2.5~ 
Phe 310 

o 

PRED 2.5A 
C-0.85 

PRED 2.5A 
C=0.543 

MODL 3.3~, 

MODL 3.3~ 

MODL 2.5~, 
Arg 5~ N~t 

PRED Z.SA 
C = 0.415 

MODL 3.3~, 

MODL z.5~ 
Ash 19, N82 

PRED 2.5/~ 
C-- 0.35 

MODL 3.3,~ 

Fig. 7. Compar i son  of  three electron density maps  of  triclinic 
lysozyme for several regions. The maps  were constructed by 
using Fobs and  Cl) ~mod! 'td'2"5/~'~es61ution, (II) 0~modl to 
3.3 A resolution and ~p,ed for 2"5 A to 3"3 A resolution, 
(III) amoa~ to 3"3 A resolution. The correlation (C) was 
calculated for difference maps between fI)-(III) and (II)- 
(III) in the neighbourhood (sphere with 1.5/~ radius) of the 
atomic positions marked by (o). Contouring intervals for 
the 2.5 ~ maps are 2 e A -3 and for the 3.3 A resolution 
map 1.5 e A -3. Atoms not included in the calculation of C 
are shown as (+). 

from multiple isomorphous replacement (kindly sup- 
plied by Professor D. C. Phillips) and found to be 0.89. 

The MI analysis is based on the individual weights 
w=cos (Ctmod1--%rea) for each structure factor. How- 
ever, in a real case, the original phase amod~ is not 
known. Therefore we calculated the correlation be- 
tween the predicted and original phases, without any 
weights, and this correlation was found to be M R =  
0.44. It is also possible to weight the structure factors 
with predicted phases in calculating a map according 
to the formula ff:=Ii(B)/Io(B) and this resulted in a 
correlation of MW = 0.48. 

These correlation factors are essentially a measure 
of the degree of peak overlap in the two maps. Table 3 
shows the value of the correlation between two Gaus- 
sian peaks, of width a, as a function of the peak-to- 
peak distance b. This is an idealized case, because the 
actual maps do not show resolution of individual 
atoms. In order to give an example of a real case, we 
took three electron density maps, all calculated from 
observed amplitudes (see §7), one corresponding to 
3.3 A resolution with model phases, another to 2.5 A 
resolution with model phases, and the third to 2.5 A 
resolution with model phases out to 3.3 A and pre- 
dicted phases from 3-3 ~ to 2.5 A, and chose several 
regions of electron density corresponding to different 
correlation values. These correlations were calculated 
only in the environments of particular atoms, the cor- 
respondence between the numerical values of C and 
the visual evidence of electron density at the atomic 
positions introduced by the predicted phases is illu- 
strated in Fig. 7. 

Table 3. Theoretical correlation between two atoms that 
have Gaussian shape 

Width=a and distance between peaks=b. The theoretical 
value of correlations is exp [0.25 (b/a)2]. 

b/a C 
0.0 1.00 
0.5 0-93 
1.5 0.78 
1-5 0.57 
2.0 0.37 
2.5 0.21 
3.0 0.10 
4.0 0.01 

7. Test of the theory on experimental data and 
-conclusions 

All the above results were obtained using a set of 
model structure factors. As a further test of the theory 
we decided to use as input data observed structure 
factors for triclinic lysozyme and phases calculated 
from a model which gave an R value of 35 % (Moult et 
al., 1976). 

The procedure followed is that described for the 
Fmodl, Ctmod~ case. We built and inverted a 336-order 
matrix, using only the structure factors out to 3.3 A. 

A C 32A - 8 



290 A P P L I C A T I O N  OF M U L T I V A R I A T E  D I S T R I B U T I O N  T H E O R Y  

The occupancy was 57.5 % with rt = 1.0, and the mean 
standard error for predicted phases of the generating 
reflexions was 75.1 ° 

Comparing this result with the Fmoa~,emod~ case 
(cr~=65 °) we see that the error is larger, presumably 
because of observational errors inherent in the experi- 
mental data. 

We then added U~N(i) columns with average oc- 
cupancy of 35 % and calculated phase extensions. The 
results in terms of error distribution also appear in 
Fig. 5 which shows a comparison of errors for the two 
sets of phase extension. Fig. 1 compares the error 
distributions for various (OCmodl--O~pred ) ranges with the 
theoretical predictions. 

We also compared corresponding electron density 
maps in the same way as for the exact case, but used 
only the MW correlation, which turned out to be 0.33 
between Fobs, 0Cpred and Fobs,~modl difference maps be- 
tween 3.3 A and 2.5 A resolution. MW between the 
original Fobs, CCmod~ map and the Fmod~,C~modl map is 0"89, 
so the mean weight of our predicted map as compared 
with the original one is 0.33/0.89 =0.37. 

We also performed an analysis of correlations in the 
neighbourhoods of the various atoms. Analysis of the 
observed maps, calculated only with structure factors 
in the 3-3 to 2-5 A range, showed that most of the extra 
density concentrated along side chains and the main 
chain carbonyls, as shown in Table 4. 

This is in agreement with previous observations 
(North & Philips, 1969) that at 3.5 A resolution poly- 
peptide chains are observed as columns of continuous 
high density with prominent peaks marking the 
branching points of side chains at the alpha carbons 
of amino acid residues, whereas at higher resolution 

the most prominent peaks along the backbone are the 
peptide carbonyl groups. That is, alpha carbon posi- 
tions are observed (and even overemphasized) at 3-5/~, 
whereas carbonyls are not, because of the rounding 
effect of low resolution, and therefore the extra density 
added in going from 3.5/k to 2.5/~ should diminish 
the alpha carbons and enhance the oxygen positions. 
Other easily recognizable features in a low-resolution 
map include the aromatic rings of tryptophan, tyrosine, 
phenylalanine and histidine. Methionine residues are 
also prominent, but they are not always clearly distin- 
guishable from aromatic residues, whereas at higher 
resolution the high density peak of the sulphur is easily 
seen. Cystine disulphide bridges are also seen at low 
resolution, but often they cannot be distinguished from 
the main chain direction, which greatly complicates 
interpretation of the map (Kartha, 1967). Thus the 
main contributions to map interpretation of the high- 
resolution data include the location of carbonyl groups 
and hence the orientation of the peptide bond, the 
identification of disulphide bonds as such, and the 
identification of methionine residues, which are gener- 
ally present in small numbers and are therefore very 
useful for following the amino-acid sequence within 
the map. Other extra features, like the flattening of 
aromatic rings and the appearance of lighter side 
chains, are also useful in the transition from the non- 
interpretable map to an interpretable one. 

In the light of these considerations, we have analysed 
the correlations, for the different types of atoms, 
between the electron density contributed by the pre- 
dicted phases and density derived from calculated 
phases, both with observed structure factors. Correla- 
tion for the main-chain atoms are shown as histograms 

Table 4. Mean value of density around each type of atom (out to a radius of 1.5 A) contributed only by reflex- 
ions in the 3.3 A to 2.5/~ shell to the Fobs,~modl map and corresponding correlations with the Fobs, 0Cprea map 

Fraction 
Mean with 

Atom Total number % of Atoms in M e a n  co r re l a t ion  correlation 
type of atoms aromatic rings* density (MW) > 0.5 
C ~ 129 - 10.45 0.20 0.17 
N 129 3.92 0.22 0-20 
C 129 1.09 0-29 0-30 
O 129 16.71 0.32 0.32 
C ~ 117 - 1.63 0.29 0.21 
C ~ 99 2.48 0.29 0.21 
C ° 71 50 0.22 0.23 0.26 
C ~ 32 75 - 3.94 0.30 0-25 
C¢ 29 66 - 1.92 0.33 0.24 
C, 6 100 - 0.87 0.30 0.33 
N o 29 6.36 0.37 0.28 
N ~ 25 35 0.01 0.26 0-36 
N~ 6 4.40 0.44 0-50 
N, 22 0.21 0-33 0-36 
O~ 17 13.95 0.30 0.24 
O ~ 14 11.54 0-38 0.28 
O ~ 4 12.97 0.46 0.59 
O, 3 11.96 0.40 0.33 
S~ 8 11.81 0-46 0.50 
S o 2 10.28 0.45 0-50 

* Tryptophan, phenylalanine and tyrosine. 
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in Fig. 8~ and corresponding data for all atoms are 
summarized in Table 4. This indicates that extra den- 
sity is correctly located at the sulphur peaks, both for 
cysteine (S t) and for methionine (Se). Also much of the 
density is correctly located at main chain carbonyls, 
whereas low correlations at C ~ positions simply indicate 
that these peaks were already established at 3.3 A 
resolution. These features are among the most im- 
portant for map interpretation, so that locating at 
least 32% of the oxygens and 50% of the sulphurs 
could be a significant aid in determining the backbone 
structure. Furthermore, side-chain atoms, especially 
oxygens and nitrogens at the ends of hydrophilic 
groups, which are not easily identifiable at 3.3/~, 
resolution also show up more clearly because of the 
additional electron density contributed by terms with 
predicted phases. 

The aim of this work has been to find a solution to 
the phase problem using statistical procedures in what 
is perhaps the most difficult and critical range in struc- 
ture determination of biological macromolecules. 
This so-called medium range covers from 4 A to 2.5 A 
and is often characterized by a failure of multiple iso- 
morphous replacement to provide sufficiently good 

phases to start refinement based on an initial structural 
model. By applying the statistical approach to the test 
case of triclinic lysozyme, it has been shown that the 
method can provide useful structural information 
particularly in the regions of the protein side chains 
and the main-chain carbonyls which indicate the 
orientations of the peptide groups. Even though this 
information is not of the quality obtainable with good 
isomorphous phasing extending to 2.5 A, it would 
surely have helped in map interpretation had multiple 
isomorphous replacement yielded good phases for 
lysozyme only out to 3.3/~,. Though, because of the 
special circumstances of this test case, we cannot 
conclude that this method would be generally applic- 
able in other cases, it certainly does show a possible 
approach to the difficult problem of solving protein 
structures with limited isomorphous phases. 

We are grateful to Drs Michael Levitt, John Moult 
and Paul Sigler for many helpful and interesting discus- 
sions and to Dr Anita Smilansky for her help in data 
processing. We would also like to express our apprecia- 
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(Az 11790) and the Minerva Foundation. 

.35 

~ .25 
o 

; Z  

o .15 

.05 

40 

.35- 

o .25 
"6 

:,,.- 

"-o .I~ 
8 ,- 

a..05 

-5 0 .5 

MW 
(a) 

I I I 

.35 

0 

o 

z .25 

,.,,. 

0 

g 

.O5 

-tO 

I I I I 

.55 

o .15 

13. 

-.5 0 .5 
MW 

I I I 

'~ .05 

I I I 

-I.0 ~5 0 .5 1.0 40 -.5 0 .5 

MW MW 
(b) (d) 

Fig. 8. Histograms of correlations (MW) for ma in -cha in  atoms between electron densities contributed by predicted and 
calculated phases for the Fobs, 0Cmod, case. The proportion of total atoms having various correlations is shown, and the 
most significant correlations (MW > 0.5) are shaded. 

A C 32A - 8* 



292 A P P L I C A T I O N  OF M U L T I V A R I A T E  D I S T R I B U T I O N  T H E O R Y  

References 

ABRAMOWlTZ, M., & STEOUN, I. A. (1965). Handbook of 
Mathematical Functions, p. 297. New York: Dover. 

A~a~s, F. (1962). Matrices, p. 58. Schaum Publ. Co. 
BLow, D. M. & C-~¢I<, F. H. C. (1959). Acta Cryst. 12, 794. 
CASTELLANO, E., PODJARNY, A. & NAVAZA, J. (1973). Acta 

Cryst. A29, 609-615. 
COULTER, C. L. &DEWAR, R. B. K. (1971). Acta Cryst. B27, 

1730-1740. 
DESTR6, R. (1972). Report CECAM Workshop, p. 9. 
GOEDKOOP, J. A. (1950). Acta Cryst. 3, 374-378. 
HENDmCKSON, W. A. & KARLa, J. (1973). 3". Biol. Chem. 

243, 3327-3340. 
KARLE, J. & HAUPTMAN, H. (1950). Acta Cryst. 3, 181- 

187. 
KARLE, J. & KARLE, I. L. (1966). Acta Cryst. 21, 849-859. 
KARTHA, G. (1967). Nature, Lond. 214, 234-330. 
MCLACm.AN, N. W. (1955). Bessel Functions, p. 202. 

Oxford: Clarendon Press. 

MAIN, P. (1973). Commun. CECAM Symposium, Holland. 
p. 14. 

MOULT, J., YONATH, A., TRAUB, W., SMILANSKY, A., POD- 
JARNY, A. D., SAYA, A. & RABINOVICH, D. (1976). J. Mol. 
Biol. In the press. 

NORTH, A. C. T. & PHILLIPS, n .  C. (1969). Prog. Biophys. 
19, part 1,1. 

RANGO, C. DE, MAUGUEN, Y. & TSOUCAmS, G. (1975). 
Acta Cryst. A31,227-233. 

RANGO, C. DE, TSOUCARIS, G., & ZELWER, C. (1974). Acta 
Cryst. A30, 342-353. 

REEKE, G. N. & LIPSCOMB, W. N. (1969). Acta Cryst. B25, 
2614-2623. 

SAYRE, D. (1953). Acta Cryst. 5, 60-65. 
SAYRE, D. (1974). Acta Cryst. A30, 180-184. 
TSOUCARIS, G. (1970a). Acta Cryst. A26, 492-499. 
TSOUCARIS, G. (1970b). Acta Cryst. A26, 499-501. 
WEINZIERL, J. E., EISENBERG, n.  & DICKERSON, R. E. (1969). 

Acta Cryst. B25, 380-387. 
YONATH, A., SMILANSKY, A., MOULT, J. & TRAUB, W. 

(1973). Abs. 9th. Int. Cong. Biochem. Stockholm, p. 120. 

Acta Cryst. (1976). A32, 292 
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The 002 and 222 multiple diffraction patterns of diamond, originally recorded by Renninger [Z. Phys. 
(1937). 106, 141-176.], have been reexamined using high-resolution techniques. Several previously un- 
reported features of these patterns have been observed and are discussed. 

Introduction 

The first systematic investigation of multiple X-ray 
diffraction effects in single crystals was carried out by 
Renninger (1937). He recorded and analyzed the 002 
and 222 multiple diffraction patterns of diamond 
crystals - using Cu K~ and Mo K~ radiations - in what 
is now generally regarded as a classic study of the 
phenomenon. 

We have recently calculated the azimuthal angles at 
which multiple diffraction effects may be observed in 
002 and 222 'Renninger patterns' of diamond, recorded 
with Cu K~ radiation. These indicate that several 
features of crystallographic interest, in addition to 
those described by Renninger, would be revealed if the 
patterns were recorded with high-resolution techni- 
ques. Results of such an investigation are discussed 
below. 

The geometry and intensities of multiple X-ray dif- 
fraction effects in single crystals have been discussed 

* Work supported in part by: Contract F44620-74-C-0065, 
U.S. Army, Joint Services to the Electronics Program. 

by many investigators in recent years, including: Cole, 
Chambers & Dunn (1962); Moon & Shull (1964); 
Zachariasen (1965); Caticha-Ellis (1969) and Prager 
(1971). An extensive bibliography of the subject is in- 
cluded in a review paper by Terminasov & Tuzov 
(1964), and more recent references are listed by Post 
(1975). 

Experimental 

The experimental arrangement used in this investiga- 
tion is similar to Renninger's, modified to improve 
resolution (Fig. 1). The X-ray source was a Cu target 
tube with an effective focal spot size of 400 x 500/tm at 
a take-off angle of 4 °. A 0.5 mm pinhole at the exit 
end of a 120 cm evacuated tube between the source and 
the specimen limited the divergence of the incident 
beam to 2' of arc. 

Two diamond specimens were used. One was a 1 cm 
square platelet, 2 mm thick, with [001] normal to the 
large face. It was optically clear and colorless, and 
exhibited considerable birefringence when examined 
between crossed polarizers. The other was roughly 
octahedral in shape, with triangular (111) faces ap- 


